Exclusive Content:

Top 6 ways Cisco prevents ransomware with EPP & EDR

Here are the top 6 ways that Cisco protects...

xMatters overview sep 7 2021, 8:00 am – 8:30 am PST

Without defined processes to manage issues, any failure –...

ID 管理:「ゼロ トラスト」セキュリティの基盤

従来の境界ベースのセキュリティ モデルは廃止されています。ゼロ トラスト モデルは、企業のファイアウォール内のすべてが安全であると信じるのではなく、不正侵入を前提として「決して信頼せず、常に検証する」というアクセス アプローチを取っています。 IDとは、それが人、サービス、モノのインターネット (IoT) デバイスを表すかどうかに関わらず、ゼロ トラスト フレームワークの基本的な要素の...

New hardware offers faster computation for artificial intelligence, with much less energy

As scientists push the boundaries of machine learning, the amount of time, energy, and money required to train increasingly complex neural network models is skyrocketing. A new area of artificial intelligence called analog deep learning promises faster computation with a fraction of the energy usage.

Programmable resistors are the key building blocks in analog deep learning, just like transistors are the core elements for digital processors. By repeating arrays of programmable resistors in complex layers, researchers can create a network of analog artificial “neurons” and “synapses” that execute computations just like a digital neural network. This network can then be trained to achieve complex AI tasks like image recognition and natural language processing.

A multidisciplinary team of MIT researchers set out to push the speed limits of a type of human-made analog synapse that they had previously developed. They utilized a practical inorganic material in the fabrication process that enables their devices to run 1 million times faster than previous versions, which is also about 1 million times faster than the synapses in the human brain.

Moreover, this inorganic material also makes the resistor extremely energy-efficient. Unlike materials used in the earlier version of their device, the new material is compatible with silicon fabrication techniques. This change has enabled fabricating devices at the nanometer scale and could pave the way for integration into commercial computing hardware for deep-learning applications.

Read the complete article here

Newsletter


Don't miss

DOD exploring requirements for managed service providers under CMMC

The Department of Defense has created a new framework...

Solving the cyber talent gap with diverse expertise

Multiple and Diverse Perspectives are Critical for Securing Your...

AI and IoT: A partnership that works

You might have wondered why you view house listings...

Real Words or Buzzwords: Edge cloud and the evolving internet

The original Internet that we built was designed based...

Why self-service needs a human touch

Self-service has emerged as a key contact center strategy...

Top 6 ways Cisco prevents ransomware with EPP & EDR

Here are the top 6 ways that Cisco protects organizations from ransomware and other cyber threats. Download now

xMatters overview sep 7 2021, 8:00 am – 8:30 am PST

Without defined processes to manage issues, any failure – no matter how minor or anticipated – can increase costs, affect customers, and reduce the...

ID 管理:「ゼロ トラスト」セキュリティの基盤

従来の境界ベースのセキュリティ モデルは廃止されています。ゼロ トラスト モデルは、企業のファイアウォール内のすべてが安全であると信じるのではなく、不正侵入を前提として「決して信頼せず、常に検証する」というアクセス アプローチを取っています。 IDとは、それが人、サービス、モノのインターネット (IoT) デバイスを表すかどうかに関わらず、ゼロ トラスト フレームワークの基本的な要素の 1 つです。この eBook では、最新の ID ソリューションがどのようなものであるかを理解することができます。次の内容について学ぶことができます。 ID が、段階的なゼロ トラスト セキュリティ モデルを実装するための論理的な出発点である理由。強力な ID を実装するための 4 つの主要要件Microsoft 365...
Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our team.